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The problem addressed in this paper is the determination of three-dimensional

structures of centrosymmetric crystals from X-ray diffraction measurements.

The `minimal principle' that a certain quantity is minimized only by the crystal

structure is employed to solve the phase problem. The mathematical

formulation of the minimal principle is a nonconvex nonlinear optimization

problem. To date, local optimization techniques and advanced computer

architectures have been used to solve this problem, which may have a very large

number of local optima. In this paper, the minimal principle model is

reformulated for the case of centrosymmetric structures into an integer

programming problem in terms of the missing phases. This formulation is

solvable by well established combinatorial optimization techniques that are

guaranteed to provide the global optimum in a ®nite number of steps without

explicit enumeration of all possible combinations of phases. Computational

experience with the proposed method on a number of structures of moderate

complexity is provided and demonstrates that the approach yields a fast and

reliable method that resolves the crystallographic phase problem for the case of

centrosymmetric structures.

1. Introduction

Since the mid-1900's, analysis of X-ray diffraction data of

crystals has been used extensively for the determination of

molecular structure and properties. While the method is

employed almost on a routine basis worldwide, it is often a

major challenge to identify the three-dimensional structure

that best ®ts the diffraction data. A key obstacle, in particular,

is the identi®cation of the phases of the diffracted rays from

measurements of intensities alone.

Methods developed for the phase problem have included

the tangent formula (Karle & Hauptman, 1956), the maximum

entropy (Bricogne, 1984), the minimal principle (Debaerde-

maeker & Woolfson, 1983), and variants of the above

(Germain & Woolfson, 1968; Germain et al., 1971; Olthof &

Schenk, 1982; Gull et al., 1987; Hauptman, 1988; Sheldrick,

1990; Altomare et al., 1993; Miller et al., 1993; Gilmore, 1996;

Sheldrick, 1997; Chang et al., 1997; Giacovazzo, 1998;

Hauptman et al., 1999).

Most of the methods for the phase problem make use of a

merit function to score potential structures based on how well

they match the experimental data. The complexity of the

resulting phase-estimation problem is signi®cant because of

the existence of multiple local optima in the underlying opti-

mization formulations. To this date, crystallographers have

resorted to combinations of local optimization and stochastic

global optimization techniques to solve these models. For

example, the Shake-and-Bake approach (Miller et al., 1993) is

based on alternating phase re®nement in reciprocal space with

a peak-picking technique in real space and terminates once a

prespeci®ed number of iterations has been reached.

For centrosymmetric structures, it has long been observed

that the phases can only take values of 0 or �. While this,

effectively, makes the phase problem a discrete optimization

problem, no current solution strategy exploits the mathema-

tical properties of the problem to effectively resolve the phase

problem. Yet a very large number of crystal structures are

centrosymmetric. For instance, nearly 76% of the over a

quarter of a million crystal structures in the Cambridge

Structural Database are centrosymmetric (Allen, 2002).

In this paper, we address the problem of using X-ray

measurements to determine structures with a center of

symmetry. Our starting point is the minimal principle model.

In the general case, this model requires the solution of a highly

nonlinear nonconvex optimization problem with trigono-

metric terms in its objective function. When the structure is

centrosymmetric, we show that the underlying optimization

problem can be reformulated in a way that avoids the trig-

onometric terms. Through the introduction of a suitable set of

binary variables, the objective function is rendered linear and

the model is reduced to a mathematically equivalent integer

linear optimization problem. Off-the-shelf optimization soft-

ware of the branch-and-bound type can be utilized to solve the

integer model. These algorithms require no starting point and



are guaranteed to terminate ®nitely with a global optimum.

Comparisons with other algorithms for structure determina-

tion are provided in this paper to illustrate the relative

effectiveness of our method in terms of solution time and

structure quality.

2. Minimal principle

Consider an X-ray experiment that provides the normalized

structure-factor amplitudes, jEmj, for m � 1; . . . ;M re¯ec-

tions, each of which corresponds to a reciprocal-lattice vector

hm and phase �m. Hauptman & Karle (1953) introduced

certain linear combinations of the phases, the structure

invariants, whose values are independent of the choice of

origin. The most important of these invariants are the triplets:

!t � �mt
� �m0t � �m00t ; t � 1; . . . ;T;

where mt, m0t and m00t are indices corresponding to reciprocal-

lattice vectors hmt
, hm0t

and hm00t
, respectively, such that

hmt
� hm0t

� hm00t
� 0 for all T triplet invariants. Under the

assumption that all n atoms in the unit cell are identical, the

conditional probability distribution of the triplet !t is given by

(Cochran, 1955)

P�!t j jEmt
j; jEm0t j; jEm00t j� �

1

2�I0�At�
exp�At cos!t�;

t � 1; . . . ;T; �1�
where At � �2=n1=2�jEmt

jjEm0t jjEm00t j and I0 is the modi®ed

Bessel function of order zero.

From the basic probability distribution in (1), it is readily

found that the expected value of !t is zero. Thus, an estimate

for the triplet !t is

!t � �mt
� �m0t � �m00t � 0; t � 1; . . . ;T; �2�

and is valid only for large values of At. Equation (2) is a

milestone in traditional direct methods. However, as n

increases, the value of At decreases and the estimate !t � 0 is

not accurate. Therefore, this estimate is not appropriate for

molecules consisting of many atoms. This limitation has

motivated Debaerdemaeker & Woolfson (1983) to suggest a

least-squares minimal principle involving the cosine of the

invariants instead of the invariants themselves. For noncen-

trosymmetric structures, the conditional expected value of the

cosine of a triplet invariant is (Germain et al., 1970)

hcos!tit �
I1�At�
I0�At�

> 0; t � 1; . . . ;T; �3�

where I1 and I0 are the modi®ed Bessel functions of order one

and zero, respectively. When the structure possesses a center

of symmetry, the conditional expected value of the cosine of

the triplet invariant is (Woolfson, 1954)

hcos!tit � tanh�At=2�> 0; t � 1; . . . ;T: �4�
The minimal principle approach estimates the phases by

solving a least-squares optimization problem that requires the

triplet invariants to be as close as possible to the theoretical

prediction in (3) or (4). The optimization problem with respect

to the triplet invariants and phases can be cast as follows

(Debaerdemaeker & Woolfson, 1983; Hauptman, 1988; Miller

et al., 1993; DeTitta et al., 1994):

Indices

m index used for re¯ections (m � 1; . . . ;M).

t index used for triplet invariants (t � 1; . . . ;T).

Variables

�m phase of the mth re¯ection.

!t triplet invariant de®ned by !t � �mt
� �m0t

� �m00t
,

where hmt
� hm0t � hm00t � 0:

Parameters

M number of re¯ections.

n number of atoms in the unit cell.

T number of invariants.

jEmj normalized structure-factor amplitude associated

with re¯ection hm.

At constant equal to �2=n1=2�jEmt
jjEm0t
jjEm00t
j.

!t conditional expected value of the cosine of the triplet

invariant from the right-hand side of (3) or (4).

Model M1

min f �!� �
PT

t�1 At�cos!t ÿ !t�2PT
t�1 At

�5�

s:t: !t � �mt
� �m0t � �m00t ; t � 1; . . . ;T; �6�

�m 2 �0; 2��; m � 1; . . . ;M;

!t 2 �0; 6��; t � 1; . . . ;T:

Note that M1 is a constrained optimization problem in which

f �!�, the objective function in (5), is minimized subject to (s.t.)

satisfying the relationships between phases and triplet in-

variants (6).

In order to solve M1, Bashir et al. (1990) have used a

simulated-annealing method that did not always converge

owing to the nature of the objective function. A greedy local

optimization technique employed by the same authors was

computationally unattractive. The parallel genetic algorithm

of Chang et al. (1994) was successful for small structures but

very time consuming.

The Shake-and-Bake approach (Miller et al., 1993) begins

with random atomic positions that result in non-negative

electron density and atoms no closer than 1.2 AÊ . From the

initial atomic positions, the values of the corresponding phases

are calculated. In each cycle of the algorithm, a phase is

perturbed by a prespeci®ed amount and the function f �!� is

calculated. Then, for the set of phases corresponding to the

smallest f value in this cycle, a Fourier transformation, an

E-map interpretation and a Fourier back inversion is

performed to further re®ne the phases. The algorithm ter-

minates when a predetermined number of trial structures has

been tested and a predetermined number of phase perturba-

tions has been completed. Convergence of this algorithm to

the solution of the problem highly depends on several par-

ameters, including accurate knowledge of the number of

independent atoms in the unit cell and how the phases are

perturbed (Miller et al., 1994). Nonetheless, this algorithm has

successfully determined many structures that involve from
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tens to more than a thousand atoms, thus demonstrating the

usefulness of the minimal principle model.

The main challenge associated with solving M1 comes from

the objective function (5), which may cause M1 to have a very

large number of local optima. To illustrate this dif®culty, 1000

local searches for M1 were performed with the commercial

nonlinear optimization software MINOS (Murtagh & Saun-

ders, 1995) from different randomly generated starting points

for C10H19ClO, a structure with only 12 non-H atoms. This

structure is centrosymmetric in the P21=c space group. Fig. 1

presents the distribution of solutions of M1 found by MINOS.

It is important to note that the global solution of the problem

was not found and that most of the identi®ed local solutions

correspond to large objective function values. Thus, a local

search algorithm will most probably fail to ®nd a global

optimum of the problem even for small structures. In the next

section, we propose an approach to overcome this dif®culty.

3. Integer programming approach

An important simpli®cation of M1 can be achieved by

observing that the phases must obtain a 0 or � value for

centrosymmetric structures. Therefore, the triplet invariants,

!t in (6), obtain values from the set f0; �; 2�; 3�g. As a result,

the cosines of the triplet invariants can only take values from

the set fÿ1; 1g. To model this discrete set of acceptable solu-

tions, we use the transformation

cos!t � 1ÿ 2�t; t � 1; . . . ;T;

where �t is a binary variable allowed to take values of 0 or 1.

This transformation forces the cosines of the triplet invariants

to take values from the set fÿ1; 1g and turns the quadratic

objective function into a linear one in terms of the binary

variables �t:

�cos!t ÿ !t�2 � ��1ÿ 2�t� ÿ !t�2 � 4�t!t � �1� !2
t ÿ 2!t�:

Simultaneously with this transformation, we will replace the

phases by their values modulo �:

'mt
� �mt

=�; 'm0t � �m0t=�; 'm00t � �m00t =�:

The normalized phases 'mt
, 'm0t and 'm00t must then be binary

variables since the original phases �mt
, �m0t , �m00t can only attain

a 0 or � value. We can then reformulate M1 as follows:

Model M2

min f ��� �
PT

t�1 At�4�t!t � �1� !2
t ÿ 2!t��PT

t�1 At

�7�

s:t: 'mt
� 'm0t � 'm00t � 2�t � �t; t � 1; . . . ;T; �8�

'm 2 f0; 1g; m � 1; . . . ;M; �9�
�t; �t 2 f0; 1g; t � 1; . . . ;T: �10�

Since �t can only receive a 0 or 1 value, the additional binary

variables �t were introduced above in order to enforce the

requirement that the sum of the phases in the left-hand side of

(8) receives a value from the set f0; 1; 2; 3g.
A nontrivial solution of M2, i.e. a solution that does not

have all phases equal to zero, provides the solution to the

phase problem. Model M2 is a constrained linear integer

programming problem. It is a much easier optimization

problem to solve to global optimality than M1. In order to

solve M2, we use a branch-and-bound global optimization

algorithm that is based on the `divide-and-conquer' concept.

Note that any binary combination of the variables satisfying

(8) provides an upper bound for the optimal value of M2. The

algorithm begins by relaxing the integrality requirements (9)

and (10). In particular, we allow all variables to take values

over the continuous interval �0; 1�. As this relaxation enlarges

the feasible space, solving the corresponding linear program-

ming problem (LP) provides a lower bound for the optimal

value of M2. If all variables were binary in the LP solution, the

Figure 1
Distribution of solutions from 1000 applications of MINOS to M1 for
C10H19ClO

Figure 2
Flowchart of solution algorithm for model M2

Table 1
Model sensitivity to N : M and M : T ratios.

Structure 4 Structure 5 Structure 6

N : M M : T R t R t R t

1 : 10 1 : 10 0.043 254 0.056 127 0.132 112
1 : 7 1 : 10 0.047* 106 0.064* 133 0.152* 26
1 : 5 1 : 10 0.047* 29 0.064* 18 0.152* 3
1 : 10 1 : 10 0.043 254 0.056 127 0.133 112
1 : 10 1 : 7 0.047* 0.4 0.080* 29 0.153 45
1 : 10 1 : 5 0.051* 1 0.089* 37 ± 39

* Atoms wrongly positioned. ± Structure not identi®ed.



corresponding upper bound would have the same value as the

lower bound and the algorithm would terminate with an

optimality proof. In case some of the variables assume frac-

tional values, one of these variables is selected and two new

problems are constructed: in one of them, the selected variable

is ®xed to 0, while in the other this variable is ®xed to 1. The

search space is thus broken into smaller subsets, each of which

is bound from below by solving its corresponding LP relaxa-

tion. Upper bounds are obtained when the LPs provide

solutions that satisfy the integrality requirements. Lower and

upper bounds are recorded and subsets are eliminated when

their lower bounds are no lower than the best available upper

bound. The process is repeated on all unresolved subsets and

the algorithm terminates when all subsets are eliminated. As

well established LP techniques are used in the context of this

algorithm, this results in a fairly ef®cient and robust solution

approach.

The entire algorithm is outlined in Fig. 2. The procedure

yields a search tree with each subproblem corresponding to a

node of the tree. Since the coef®cients of the �t variables in (7)

are positive, the LP relaxation will attempt to minimize all of

these variables. Hence, once all �t and 'm variables are ®xed to

binary values, all �t will naturally be 0 or 1. Thus, it suf®ces

during the branch-and-bound algorithm to generate subsets by

considering fractional values of �t and 'm variables only.

By mere virtue of the ®niteness of the search space of

this integer program, branch-and-bound is a ®nite algorithm

that implicitly enumerates all integer combinations of the

normalized phases in order to identify a globally optimal

combination. We refer the reader to Nemhauser & Wolsey

(1988) for a more detailed discussion on algorithms for solving

integer programming problems, including recent advances in

convexi®cation and decomposition.

3.1. Implementation

In our implementation, we begin by using the LEVY and

EVAL programs (Blessing, 1989) to obtain the normalized

structure-factor amplitudes jEmj, m � 1; . . . ;M. Next, a global

solution of the integer programming problem is obtained

through CPLEX7.0 (ILOG, 2000), which employs a branch-

and-bound optimization strategy. This step provides the values

of the phases. Then, a modi®ed version of the CRUNCH

system (de Gelder et al., 1993) is used to calculate an E map,

perform the peak-picking procedure and calculate the atomic

coordinates corresponding to the phases found from solving

M2. All runs reported in the sequel were performed on a

1.5 GHz Dell Xeon workstation with 1 Gbyte memory.

4. Computational results

The purpose of this section is threefold. First, to experiment

with the proposed model and identify how computational

requirements and solution quality change when varying the

number of phases and invariants used in the model. Second, to

present computational results on the solution of a number of

structures. Third, to compare the proposed computational

model with existing ones in the literature.

4.1. Parametric analysis

Table 1 illustrates the effect of the number of re¯ections and

triplets on solution quality and computational requirements of

M2. We use re¯ection data for structures 4, 5 and 6 of Table 2

with 48, 42 and 37 non-H atoms (N), respectively. Table 1

shows that there is a trade-off between the running time (t, in

seconds) and the quality of the solution when more phases and

invariants are included in M2. Solution quality was measured

in terms of crystallographic R. Clearly, the CPU time

decreased while R deteriorated when N : M was increased

with a constant M : T ratio equal to 1 : 10. Structure quality

also deteriorated when M : T was increased under a constant

N : M equal to 1 : 10. When either of the two ratios became

too large, atoms were wrongly positioned and, in one of the

cases, the structure was not identi®ed. The results of Table 1

suggest that, if the dimension of M2 must be reduced, one

should reduce the number of re¯ections M and create 10M

triplet invariants.
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Table 2
Test data sets.

Structure Chemical formula N NI Z Space group Reference

1 C50H66O6 �C3H7NO 61 61 4 P21=c Bryan & Levitskaia (2002)
2 C30H22O6S 37 37 4 P21=c Krishnakumar et al. (2002)
3 C30H32N2O6 38 19 2 P21=c Sun et al. (2002)
4 C44H38O4 48 24 1 P�1 Vande Velde et al. (2002)
5 C34H42B2N2O4 42 21 2 P21=n Kliegel, Amt et al. (2002)
6 C34H26N2O 37 37 4 P21=c Zhuang et al. (2002)
7 C5H12NO1+ �C28H37B6O10

1ÿ�0.5C4H10O 111 56 2 P�1 Kliegel, DruÈ ckler et al. (2002)
8 3C40H32O2 �4C6H6 150 75 1 P�1 Ohba et al. (2002)
9 C42H56N2O2 46 23 2 P21=n Lynch (2002)

10 C36H62 36 36 4 P21=c Bragg et al. (2002)
11 C17H19N3O2 22 22 4 P21=n Wilson (2002)
12 C10H19ClO 12 12 4 P21=c Wilson (2002)
13 C18H15NO3 22 22 4 P21=c Wilson (2002)
14 C13H14N2O3 18 18 4 Pc Wilson (2002)
15 C41H78O11Si8 60 60 2 P�1 Arnold & Blake (2001)
16 C44H52N4 �C2H6O 51 27 4 C2=c Camiolo et al. (2001)
17 C12H10O3 15 15 4 P21=n Howie et al. (2001)
18 C24H12N6 �4CHCl3 46 46 4 P21=n Alfonso & Stoeckli-Evans (2001)
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4.2. Solution of a collection of structures

We have used the integer programming approach to

successfully determine the 18 structures of Table 2. For each

structure, this table shows the number of atoms in the

chemical formula (N), the number of independent atoms in

the unit cell (NI) and the number of molecules in the unit cell

(Z). These structures crystallize in ®ve different space groups.

Six structures include moderately heavy atoms (S, Cl, Si). All

structures are centrosymmetric with the exception of structure

14 (C13H14N2O3) that is noncentrosymmetric but was solved in

P21=c by our algorithm owing to the pseudosymmetry of the

intensity data. Atomic resolution data sets were available for

these structures in the references provided in this table.

Although all of the structures were previously

known, this information was not used in our

solution strategy. In particular, no starting

point was provided to the integer program-

ming solver.

Table 3 shows the numbers of atoms in the

chemical formula (N), phases (M) and in-

variants (T) used in the integer programming

model. An N : M : T ratio of 1 : 10 : 100 was

used for all structures with ®ve exceptions. For

structure 8, there was an insuf®cient number

of strong re¯ections. For structures 10, 12, 14

and 17, the available re¯ection data did not

provide a suf®cient number of triplet invar-

iants that could be generated. Table 3 also

provides the total number of �, � and '
variables in the optimization model M2. There

are 2T + M variables and exactly T linear

constraints (one constraint for each triplet

invariant).

All 18 structures were correctly determined

by the algorithm. The values of the minimal

principle and the CPU time required for each

structure are provided in Table 3. Our

computational experience showed that M2

results in the same values for the phases

irrespective of whether !t is set equal to

tanh�At=2� or I1�At�=I0�At�. In order to

enable comparison of the objective function

values with the Shake-and-Bake approach

which uses !t � I1�At�=I0�At�, we report

both objective functions, denoted as f

when !t � I1�At�=I0�At� and f 0 when

!t � tanh�At=2� was used in the computa-

tions. The value of f 0 is always smaller than

the corresponding value of f since (4) is more

accurate than (3) for centrosymmetric struc-

tures. The value of f or f 0 depends on the

number of triplet invariants used and, there-

fore, atoms in the structure, as well as on the

quality of the experimental data.

As is apparent from Table 3, despite the

large number of integer variables in the

optimization problem, the running time is very short for all

structures. The average (Avg) and standard deviation (Std) of

the time required for solving the structures is about 2 min per

structure while most of the structures were solved within a few

seconds. We also note that the two different objectives do not

signi®cantly affect the CPU time required for solution.

4.3. Comparisons with other approaches

The structures of Table 2 were also solved with the Shake-

and-Bake and CRUNCH systems. The former system applies a

stochastic search algorithm to M2 with real-space re®nement,

while the latter system utilizes Karle±Hauptman matrices for

the solution of the phase problem.

Table 3
Model dimensions and results with integer programming approach.

Structure N M T Variables f CPU s f 0 CPU s

1 61 610 6100 12810 0.0625 196 0.0342 402
2 37 370 3700 7770 0.0351 83 0.0141 88
3 38 380 3800 7980 0.0862 89 0.0592 103
4 48 480 4800 10080 0.1347 254 0.0876 112
5 42 420 4200 8820 0.0965 127 0.0672 144
6 37 370 3700 7770 0.0586 112 0.0310 131
7 55.5 542 5500 11550 0.0316 238 0.0104 246
8 150 1378 13780 28938 0.3594 28 0.3495 29
9 46 460 4600 9660 0.0872 130 0.0588 80

10 36 360 3164 6688 0.0193 74 0.0027 95
11 22 220 2200 4620 0.0053 63 0.0002 57
12 12 150 1500 3150 0.0016 10 1.0Eÿ8 11
13 22 220 2200 4620 0.0044 10 0.0052 23
14 18 220 1600 3420 0.0243 16 0.0054 19
15 60 590 6000 12590 0.0542 601 0.0261 350
16 51 510 5100 10710 0.1258 261 0.0982 234
17 15 200 2000 4200 0.0041 6 0.0001 133
18 52 520 5200 10920 0.0351 134 0.0155 22
Avg 135 127
Std 143 113

Table 4
Shake-and-Bake results.

SnB1 SnB10 SnB100 SnB1000

Structure f t f t f t f t n� Te k

1 0.869 3 0.596 22 0.406 540 0.406 1740 70 45 56/61
2 0.533 2 0.223 8 0.223 120 0.223 960 10 13 30/37
3 1.075 1 0.522 4 0.359 50 0.359 240 17 3 19/19
4 0.839 1 0.451 3 0.175 70 0.175 180 43 7 24/24
5 1.060 1 0.266 2 0.266 20 0.266 200 6 3 21/21
6 0.598 1 0.598 6 0.383 160 0.383 600 40 12 35/37
7 0.965 3 0.645 16 0.459 300 0.254 1380 149 173 53/56
8 1.286 4 0.583 9 0.373 420 0.373 3040 49 291 67/75
9 0.852 1 0.286 3 0.286 33 0.286 330 4 5 23/23

10 0.782 2 0.296 12 0.296 360 0.296 1020 3 38 34/36
11 0.806 1 0.119 2 0.102 22 0.096 220 23 2 15/22
12 0.314 1 0.155 4 0.155 40 0.155 120 8 3 4/12
13 0.589 1 0.123 14 0.123 110 0.123 360 2 9 22/22
14 0.369 1 0.234 4 0.234 60 0.225 180 575 6 5/18
15 0.66 4 0.419 21 0.298 540 0.083 1920 305 960 18/60
16 0.826 2 0.729 8 0.356 150 0.356 780 56 29 24/27
17 0.465 1 0.208 2 0.056 20 0.056 189 56 1 15/15
18 0.695 2 0.408 12 0.204 115 0.204 1150 65 58 43/46
Avg 2 8 174 812 82 92 28/34
Std 1 6 178 795 143 229 17/18



For the Shake-and-Bake (SnB) system, we used the default

parameters as described in Miller et al. (1994) and in the

software manual for centrosymmetric structures. We used the

same number of triplet invariants as in the integer program-

ming approach. Table 4 provides computational results with

SnB. Four runs are reported for each problem: SnB1, SnB10,

SnB100 and SnB1000 with 1, 10, 100 and 1000 SnB trials,

respectively. For each run, we report the value �f � of the

minimal principle objective obtained by SnB and the CPU

seconds �t� taken by this algorithm. The entries under n�

denote the iteration of this algorithm for the solution to be in

the range of the best SnB1000 minimal principle objective

value for the ®rst time. Under Te, we provide the CPU time of

SnB1000 divided by the number of SnB1000 trials that led to

the best solution identi®ed by the algorithm. Since SnB relies

on a stochastic search technique that depends on randomly

generated starting points, Te can be thought of as the expected

CPU time for this algorithm to reach its best solution under

the software default options. The average CPU requirements

(Avg) of the integer programming algorithm (Table 3) are

about 30% higher than the average expected time in Table 4

and approximately 30% lower than the computational

requirements of SnB100. Finally, the last column of this table

presents the fraction �k� of the total number of independent

atoms that were correctly identi®ed by SnB. An average of

82% of the total number of atoms were correctly identi®ed by

this algorithm.

As Table 4 indicates, in three cases, over 100 trials were

required for SnB to reach a plateau in the objective function

value. For all cases, the SnB minimal principle value was

higher than that of the integer programming model. Use of

the integer programming model results in objective function

values that are on average 13 times smaller than those of

SnB1000. Obviously, SnB is reporting local minima of the

minimal principle model for all of these 18 structures. It should

be noted that the default 1000 trials may not always provide

the best possible solution of the SnB algorithm. For example,

when 10000 trials were run for structure 2, the best minimal

principle objective function value found was f � 0:193 with a

corresponding R value of 0.30, which represent improvements

of 13 and 12%, respectively, with respect to the corresponding

values of SnB1000. It is also interesting to note that other

settings also affect this algorithm. For instance, for structure

11, when 1.5 times the default number of invariants were used,

the R value decreased from 0.36 to 0.23, while 20 out of the 22

atoms were identi®ed correctly.

Table 5 shows that the integer programming (IP) approach

results in a much smaller crystallographic R than any of the

SnB runs, with an average improvement of 55% with respect

to SnB1000. A * next to the SnB1000 entries indicates those

cases in which we were unable to identify a good match

between peak positions found with SnB1000 and the

published structures. This happened in ®ve of the structures.

For the CRUNCH system, we used the default values for all

the parameters as described in the software manual. At least

ten trials for each structure were run. Fifteen out of the

eighteen structures were identi®ed by CRUNCH with at most

two atoms missing. The structures of C50H66O6 �C3H7NO,

C44H52N4 �C2H6O and C24H12N6 �4CHCl3 were not identi®ed

by CRUNCH. For all structures solved by CRUNCH, the

integer programming method results in a smaller or equal

crystallographic R value as shown in Table 5. Structures that

were not identi®ed by CRUNCH are denoted by a dash (±) in

this table. For 11 of the 15 structures solved by CRUNCH, the

IP solution had a strictly smaller R. An average improvement

of 12% was achieved over these 15 structures. The running

time of CRUNCH was an average of 2 min per structure and a

total time of 35 min for all 18 structures, which is very similar

to the CPU requirements of the integer programming

approach.

5. Conclusions

This paper develops an integer programming reformulation of

the minimal principle for structure determination for centro-

symmetric structures and proposes a branch-and-bound

algorithm for its solution. This integer programming method

provides fast and accurate results for 18 structures to which it

was applied. The approach improves the crystallographic R an

average of 55 and 12% in comparison to the Shake-and-Bake

and CRUNCH systems, respectively. Furthermore, structures

that were not solved with the default parameters of the latter

two systems were solved with the integer programming

method.

An important feature of the proposed technique is that it

comes with a theoretical guarantee that it provides the global

optimum of the minimal principle in a ®nite number of steps.

Furthermore, it solves the phase problem entirely in reciprocal

space with no need for iterations in real space.

The results of this paper demonstrate that the global solu-

tion of the minimal principle corresponds to the correct

structure for the cases solved. It would be interesting to

investigate whether this is also the case for larger and
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Table 5
Crystallographic R values for IP, Shake-and-Bake and CRUNCH.

Structure IP SnB1 SnB10 SnB100 SnB1000 CRUNCH

1 0.09 0.40 0.33 0.23 0.23 ±
2 0.14 0.41 0.34 0.34 0.34* 0.22
3 0.05 0.46 0.38 0.28 0.28 0.05
4 0.04 0.42 0.35 0.21 0.20 0.05
5 0.06 0.47 0.18 0.18 0.18 0.08
6 0.13 0.35 0.35 0.21 0.21 0.15
7 0.06 0.46 0.39 0.33 0.19 0.07
8 0.19 0.42 0.35 0.22 0.22 0.20
9 0.08 0.39 0.16 0.16 0.16 0.10

10 0.10 0.37 0.18 0.18 0.18 0.10
11 0.06 0.38 0.38 0.36 0.36* 0.07
12 0.10 0.41 0.38 0.38 0.38* 0.10
13 0.05 0.33 0.15 0.15 0.15 0.05
14 0.04 0.36 0.31 0.31 0.29* 0.04
15 0.11 0.41 0.35 0.33 0.24* 0.13
16 0.19 0.42 0.41 0.30 0.30 ±
17 0.14 0.38 0.33 0.23 0.22 0.20
18 0.25 0.41 0.38 0.25 0.25 ±

* Structure not identi®ed by Shake-and-Bake. ± Structure not identi®ed by
CRUNCH.
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noncentrosymmetric structures. To address this question, we

are currently working to develop fast specialized combina-

torial optimization algorithms for the proposed model as well

as to extend this approach to noncentrosymmetric structures.
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